Review of Linear Algebra

- A matrix is a rectangular array of numbers enclosed in brackets.
- * Examples, (i) (0 1 2), (ii) $\begin{pmatrix} 0 & 1 \\ 5 & 7 \end{pmatrix}$, (iii) $\begin{pmatrix} \pi \\ 2 \\ 0.4 \end{pmatrix}$
- * A general matrix may be written as, $\mathbf{A} = \begin{pmatrix} a11 & \dots & a1m \\ . & \dots & . \\ an1 & \dots & anm \end{pmatrix}$
- * This is a $n \times m$ matrix, in shorthand $\mathbf{A} = (a_{ij})$
- ❖ Column vectors -> a, row vectors, ā
- * Thus, the matrix $A = (\underline{a}_1, \underline{a}_2, ..., \underline{a}_m)$
- * A diagonal matrix is, $\mathbf{A} = \begin{pmatrix} a11 & \dots & 0 \\ . & ajj & . \\ 0 & \dots & amm \end{pmatrix}$, $\mathbf{I} = \begin{pmatrix} 1 & \dots & 0 \\ . & 1 & . \\ 0 & \dots & 1 \end{pmatrix}$ (identity matrix)

Equality, Addition, Subtraction, Scalar Multiplication

Addition and Subtraction

$$A+B=(a_{ij}+b_{ij}); A-B=(a_{ij}-b_{ij}); A+B=B+A$$

- * Examples: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix}$
- * Scalar multiplication, $cA = (ca_{ij})$; c(A+B) = cA+cB
- * The transpose of a matrix is obtained by interchanging the rows and columns of a matrix, \mathbf{A}^T is the transpose of \mathbf{A} . If \mathbf{A} is $n \times m$ then is $m \times n$.

Matrix multiplication

- * $\bar{a} \, \underline{b} = (a_1 b_1 + \dots + a_n b_n), \, \underline{b} \, \bar{a}$ is defined but quite different.
- * **A** is $(n \times m)$, **B** is $(m \times l)$, **AB**= $\begin{pmatrix} \overline{a}_1 \\ . \\ \overline{a}_m \end{pmatrix} (\underline{b}_1 ... \underline{b}_l) = \begin{pmatrix} \overline{a}_1 \underline{b}_1 & ... & \overline{a}_1 \underline{b}_l \\ ... & ... & ... \\ \overline{a}_m \underline{b}_1 & ... & \overline{a}_m \underline{b}_l \end{pmatrix}$
- ❖ In general AB≠BA
- * Example, $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 4 \\ 3 \cdot 1 + 4 \cdot 4 \end{pmatrix} = \begin{pmatrix} 9 \\ 19 \end{pmatrix}$
- If A is $n \times m$, then $\mathbf{I}_n \mathbf{A} = \mathbf{A}$ and $\mathbf{A} \mathbf{I}_m = \mathbf{A}$
- ❖ If either \bar{a} or \underline{b} is filled with zeros then $\bar{a} \, \underline{b} = 0$

Systems of Linear Equations

- $x_1 + 3x_2 = 9$ $2x_1 + x_2 = 6$
- General system of linear equations

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

....
 $a_{n1}x_1 + \dots + a_{nn}x_n = b_n$

- Ax = b
- ❖ An inverse function of **A**, **A**⁻¹, satisfies **A**⁻¹**A**=**I**_n
- \bullet $\mathbf{A}^{-1}\mathbf{A}\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}} -> \mathbf{I}_{n}\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}} -> \underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}}$

Determinants

- Inverse and determinants are only defined for square matrices
- A determinant for a 2 by 2 is easy. Larger matrices can be done recursively but are tedious (see R function chol2inv).

$$det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- Useful facts
 - 1: \mathbf{A}^{-1} exists if and only if det $\mathbf{A}\neq 0$
 - 2: det(AB) = det A det B
 - 3: $\det \mathbf{A}^{\mathsf{T}} = \det \mathbf{A}$
 - 4: There is a non-trivial solution to $\mathbf{A}\underline{\mathbf{x}} = \mathbf{0}$ if and only if det $\mathbf{A} = \mathbf{0}$
- Prove 4 by assuming det A≠0 and then there exists and inverse and a trivial solution
 - 5: There is a unique solution to $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ if and only if det $\mathbf{A} \neq 0$